Φυλλάδιο 2 (Απειροστικός λογισμός ΙΙ)

- 1. Δίνονται $f,g:A\to R$ ομοιόμορφα συνεχείς. Δείξτε ότι το άθροισμα f+g είναι ομοιόμορφα συνεχής στο A. Αποδείξτε επίσης ότι το γινόμενο fg είναι ομοιόμορφα συνεχής στο A, όταν f,g φραγμένες συναρτήσεις. Είναι η τελευταία υπόθεση απαραίτητη ώστε η fg να είναι ομοιόμορφα συνεχής?
- 2. Δείξτε ότι αν $f: A \to B$ και $g: B \to R$ ομοιόμορφα συνεχείς συναρτήσεις τότε η σύνθεση $g \circ f: A \to R$ είναι ομοιόμορφα συνεχής.
- 3. Εξετάστε ως προς την ομοιόμορφη συνέχεια τις παρακάτω συναρτήσεις

$$\alpha$$
) $f(x) = x^p, x > 0 (p > 0)$

$$\beta) \ f(x) = x^2 + \frac{1}{x}, \ x \in (0,1)$$

$$\gamma$$
) $f(x) = \frac{1}{x-2}$, $x \in (0,2)$

$$\delta) \ f(x) = \frac{1}{x-2}, \ x \in (0,1).$$

$$\epsilon$$
) $f(x) = e^x$, $x \in R$

$$στ$$
) $f(x) = e^x$, $x ∈ (-∞,3]$

$$\zeta$$
) $f(x) = \sin \sqrt{x}, x \ge 0$

$$\eta$$
) $f(x) = \cos(x^2)$, $x \in R$.

- 4. Δείξτε ότι αν η $f:(0,1)\to R$ είναι ομοιόμορφα συνεχής τότε είναι φραγμένη. Δείξτε επίσης ότι υπάρχει συνεχής και φραγμένη συνάρτηση $f:(0,1)\to R$ η οποία δεν είναι ομοιόμορφα συνεχής.
- 5. Δίνεται $f: R \to R$ συνεχής ώστε $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$. Δείξτε ότι η f είναι ομοιόμορφα συνεχής στο R.
- 6. Δίνεται $f:[2,+\infty)\to R$ συνεχής ώστε να υπάρχει το όριο $\lim_{x\to+\infty}f(x)$. Δείξτε ότι η f είναι ομοιόμορφα συνεχής στο $[2,+\infty)$.
- 7. Δείξτε ότι αν η συνάρτηση $f: R \to R$ είναι ομοιόμορφα συνεχής, και υπάρχει c>0 ώστε $f(x)\geq c$, για κάθε $x\in R$, τότε η συνάρτηση 1/f είναι ομοιόμορφα συνεχής στο R. Δείξτε ότι η ύπαρξη της σταθεράς c με την συγκεκριμένη ιδιότητα είναι απαραίτητη για να έχουμε το ζητούμενο συμπέρασμα.
- 8. Εξετάστε ως προς την ομοιόμορφη συνέχεια τις παρακάτω συναρτήσεις

$$\alpha) f(x) = \ln x, x > 0.$$

$$\beta$$
) $f(x) = \ln x, x \ge 1$

$$\gamma$$
) $f(x) = 1/x^a, x \ge 1, a > 0$

$$\delta) \ f(x) = 1/x^a, \ x > 0, \ a > 0$$

$$\varepsilon) f(x) = \frac{\sin x}{x}, x > 0.$$